Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

Ivan E. Kareev, ${ }^{\text {a,b }}$ Natalia B. Shustova, ${ }^{\text {c }}$ Brian S. Newell, ${ }^{\text {c }}$ Susie M. Miller, ${ }^{\text {c }}$ Oren P. Anderson, ${ }^{\text {c }}$ Steven H. Strauss ${ }^{\text {c* }}$ and Olga V. Boltalina ${ }^{\text {c }}$

${ }^{\mathrm{a}}$ Institute of Problems of Chemical Physics, Russian Academy of Sciences, Chernogolovka 142432, Russian Federation, ${ }^{\mathbf{b}}$ Forschungszentrum Karlsruhe, Institute for Nanotechnology, Karlsruhe 76021, Germany, and ${ }^{\text {c }}$ Department of Chemistry, Colorado State University, Fort Collins, Colorado 80523, USA

Correspondence e-mail:
steven.strauss@colostate.edu

Key indicators

Single-crystal X-ray study
$T=100 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.004 \AA$
R factor $=0.052$
$w R$ factor $=0.123$
Data-to-parameter ratio $=12.5$

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

[^0]
1,6,11,18,24,27,52,55-Octakis(trifluoro-methyl)-1,6,11,18,24,27,52,55-octahydro-$\left(\mathrm{C}_{60}-\mathrm{I}_{h}\right)$ [5,6]fullerene

The title compound, $\mathrm{C}_{68} \mathrm{~F}_{24}$, is one of five isomers of $\mathrm{C}_{60}\left(\mathrm{CF}_{3}\right)_{8}$. It has an idealized $\mathrm{I}_{h} \mathrm{C}_{60}$ core with the eight CF_{3} groups arranged on an asymmetric para-para-para-meta-para ($p^{3} m p$) ribbon of six edge-sharing $\mathrm{C}_{6}\left(\mathrm{CF}_{3}\right)_{2}$ hexagons plus an isolated $p-\mathrm{C}_{6}\left(\mathrm{CF}_{3}\right)_{2}$ hexagon. There are no cage $\mathrm{Csp}{ }^{3}-\mathrm{C} s p^{3}$ bonds. There are intramolecular F \cdots F contacts between pairs of neighboring CF_{3} groups that range from 2.582 (3) to 2.647 (3) \AA.

Comment

The high-temperature reaction of C_{60} with $\mathrm{CF}_{3} \mathrm{I}$ or $\mathrm{AgCF}_{3} \mathrm{COO}$ followed by sublimation at $673-773 \mathrm{~K}$ and HPLC purification has yielded one isomer each of $\mathrm{C}_{60}\left(\mathrm{CF}_{3}\right)_{2}$ and $\mathrm{C}_{60}\left(\mathrm{CF}_{3}\right)_{4}$ (Goryunkov et al., 2003), two isomers of $\mathrm{C}_{60}\left(\mathrm{CF}_{3}\right)_{6}$ (Goryunkov et al., 2003; Kareev, Shustova et al., 2006), at least four isomers of $\mathrm{C}_{60}\left(\mathrm{CF}_{3}\right)_{10}$ (Kareev et al., 2005; Kareev, Lebedkin, Miller et al., 2006; Kareev, Lebedkin, Popov et al., 2006), and one isomer of $\mathrm{C}_{60}\left(\mathrm{CF}_{3}\right)_{12}$ (Troyanov et al., 2006). In a similar fashion, we have now isolated five isomers of $\mathrm{C}_{60}\left(\mathrm{CF}_{3}\right)_{8}$. The title compound, (I), is one of these five new compounds and we report its crystal structure here.

(I)

The structure of (I) (Fig. 1) comprises an idealized $\mathrm{I}_{h} \mathrm{C}_{60}$ cage with eight Csp ${ }^{3}$ atoms at positions $1,6,11,18,24,27,53$ and 56 (IUPAC nomenclature), each of which is attached to a CF_{3} group. Each Csp p^{3} cage atom is adjacent to three Csp ${ }^{2}$ cage atoms. The CF_{3} groups are arranged on one isolated para$\mathrm{C}_{6}\left(\mathrm{CF}_{3}\right)_{2}$ hexagon and a para-para-para-meta-para ribbon (a $p^{3} m p$ ribbon) of edge-sharing $\mathrm{C}_{6}\left(\mathrm{CF}_{3}\right)_{2}$ hexagons (see Schlegel diagram in Fig. 1). The shared edges in the ribbon of

Received 22 June 2006 Accepted 26 June 2006

Figure 1
Left: The molecular structure of (I), showing the atom-labeling scheme and with displacement ellipsoids drawn at the 50% probability level. Right: Schlegel diagram of (I), showing the C_{60} core C -atom numbers (each core C atom bearing a CF_{3} group is depicted as a black circle) and the $p^{3} m p, p$ addition pattern [the meta- $\mathrm{C}_{6}\left(\mathrm{CF}_{3}\right)_{2}$ hexagon is indicated by the letter m].

Figure 2
Schlegel diagrams of (I), (II), (III) and (IV), showing the location of the R_{f} groups as black circles on the ribbons of meta- and para- $\mathrm{C}_{6}\left(R_{f}\right)_{2}$ edgesharing hexagons [meta- $\mathrm{C}_{6}\left(R_{f}\right)_{2}$ hexagons are indicated by the letter m]. All four compounds have a $p^{3} m p$ ribbon as part of their structures [compound (IV) has two such ribbons in its structure].
hexagons are Csp ${ }^{3}-\mathrm{Csp}^{2}$ bonds. Thus, any pair of adjacent hexagons along the ribbon have a common CF_{3} group. There are F...F intramolecular contacts between pairs of neighboring CF_{3} groups that range from 2.582 (3) to 2.647 (3) \AA.

Fig. 2 shows the Schlegel diagrams for (I) and for the related addition patterns of $\mathrm{C}_{1}-p^{3} m p, p-\mathrm{C}_{60}\left(\mathrm{C}_{2} \mathrm{~F}_{5}\right)_{8}$, (II) (Kareev, Kuvychko et al., 2006), $\mathrm{C}_{1}-p^{3} m p m p m p-\mathrm{C}_{60}\left(\mathrm{CF}_{3}\right)_{10}$, (III) (Kareev, Lebedkin, Miller et al., 2006), and $\mathrm{C}_{1}-$ pmp $^{3} \mathrm{mpmp}$ $\mathrm{C}_{60}\left(\mathrm{CF}_{3}\right)_{10}$, (IV) (Kareev et al., 2005). The structures of all four compounds include the $p^{3} m p$ ribbon or ribbon fragment of six edge-sharing $\mathrm{C}_{6}\left(R_{\mathrm{f}}\right)_{2}$ hexagons that is also believed to be the addition pattern for $\mathrm{C}_{1}-\mathrm{C}_{60}\left(\mathrm{CF}_{3}\right)_{6}$ (Goryunkov et al., 2003). The four shortest cage $\mathrm{C}-\mathrm{C}$ bonds (\AA) are $\mathrm{C} 4-\mathrm{C} 5$ [1.345 (3)], C7-C8 [1.351 (4)], C9-C10 [1.358 (4)] and C56C60 [1.357 (4)]. Significantly, the C4-C5 and C9-C10 bonds are pentagon-hexagon junctions, which are the longer of the two types of $\mathrm{C}-\mathrm{C}$ bonds in C_{60}.

Experimental

The synthesis of (I) was accomplished by heating C_{60} in a stream of $\mathrm{CF}_{3} \mathrm{I}$ at 733 K as previously reported (Kareev et al., 2005). Crystals of
the HPLC-purified compound were grown by slow evaporation of a saturated toluene solution.

Crystal data

$\mathrm{C}_{68} \mathrm{~F}_{24}$
$M_{r}=1272.68$
Monoclinic, $P 2_{1} / c$
$a=17.4108$ (13) \AA
$b=9.7708$ (8) \AA
$c=24.5142(18) \AA$
$\beta=92.589(4)^{\circ}$
$V=4166.0(6) \AA^{3}$

Data collection

Bruker Kappa-APEX-II
diffractometer
φ and ω scans
Absorption correction: multi-scan
(SADABS; Bruker, 2000)
$T_{\text {min }}=0.945, T_{\text {max }}=0.995$

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.052$
$w R\left(F^{2}\right)=0.123$
$S=1.01$
10338 reflections
830 parameters

$$
\begin{aligned}
& Z=4 \\
& D_{x}=2.029 \mathrm{Mg} \mathrm{~m}^{-3} \\
& \text { Mo } K \alpha \text { radiation } \\
& \mu=0.19 \mathrm{~mm}^{-1} \\
& T=100(1) \mathrm{K} \\
& \text { Plate, red } \\
& 0.30 \times 0.12 \times 0.03 \mathrm{~mm}
\end{aligned}
$$

64785 measured reflections 10338 independent reflections 6471 reflections with $I>2 \sigma(I)$ $R_{\text {int }}=0.070$
$\theta_{\text {max }}=28.3^{\circ}$

$$
\begin{aligned}
& w=1 / {\left[\sigma^{2}\left(F_{\mathrm{o}}^{2}\right)+(0.0437 P)^{2}\right.} \\
&+4.7196 P] \\
& \text { where } P=\left(F_{\mathrm{o}}^{2}+2 F_{\mathrm{c}}^{2}\right) / 3 \\
&(\Delta / \sigma)_{\max }=0.001 \\
& \Delta \rho_{\max }=0.65 \mathrm{e}^{-3} \mathrm{~A}^{-3} \\
& \Delta \rho_{\min }=-0.68 \mathrm{e}^{-3}
\end{aligned}
$$

Extinction correction: SHELXTL
Extinction coefficient: 0.00067 (18)

Data collection: APEX2 (Bruker, 2006); cell refinement: APEX2; data reduction: $A P E X 2$; program(s) used to solve structure: SHELXTL (Bruker, 2000); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

The authors thank the Colorado State University Research Foundation, the Volkswagen Foundation (I-77/855) and the Russian Foundation for Basic Research (Project Nos. 05-0333051a and 06-03-33147a) for supporting this study.

organic papers

References

Bruker (2000). SHELXTL (Version 6.14) and SADABS (Version 2.10). Bruker AXS Inc., Madison, Wisconsin, USA.
Bruker (2006). APEX2. Version 2.0-2. Bruker AXS Inc., Madison, Wisconsin, USA.
Goryunkov, A. A., Kuvychko, I. V., Ioffe, I. N., Dick, D. L., Sidorov, L. N., Strauss, S. H. \& Boltalina, O. V. (2003). J. Fluorine Chem. 124, 61-64.
Kareev, I. E., Kuvychko, I. V., Lebedkin, S. F., Miller, S. M., Anderson, O. P., Seppelt, K., Strauss, S. H. \& Boltalina, O. V. (2005). J. Am. Chem. Soc. 127, 8362-8375

Kareev, I. E., Kuvychko, I. V., Lebedkin, S. F., Miller, S. M., Anderson, O. P., Strauss, S. H. \& Boltalina, O. V. (2006). Chem. Commun. pp. 308-310.
Kareev, I. E., Lebedkin, S. F., Miller, S. M., Anderson, O. P., Strauss, S. H. \& Boltalina, O. V. (2006). Acta Cryst. E62, o1498-o1500.
Kareev, I. E., Lebedkin, S. F., Popov, A. A., Miller, S. M., Anderson, O. P., Strauss, S. H. \& Boltalina, O. V. (2006). Acta Cryst. E62, o1501-o1503.
Kareev, I. E., Shustova, N. B., Kuvychko, I. V., Lebedkin, S. F., Miller, S. M., Anderson, O. P., Popov, A. A., Strauss, S. H. \& Boltalina, O. V. (2006). Submitted for publication.
Troyanov, S. I., Dimitrov, A. \& Kemnitz, E. (2006). Angew. Chem. Int. Ed. 45, 1971-1974.

[^0]: (C) 2006 International Union of Crystallography All rights reserved

