organic papers

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Ivan E. Kareev,^{a,b} Natalia B. Shustova,^c Brian S. Newell,^c Susie M. Miller,^c Oren P. Anderson,^c Steven H. Strauss^{c*} and Olga V. Boltalina^c

^aInstitute of Problems of Chemical Physics, Russian Academy of Sciences, Chernogolovka 142432, Russian Federation, ^bForschungszentrum Karlsruhe, Institute for Nanotechnology, Karlsruhe 76021, Germany, and ^cDepartment of Chemistry, Colorado State University, Fort Collins, Colorado 80523, USA

Correspondence e-mail: steven.strauss@colostate.edu

Key indicators

Single-crystal X-ray study T = 100 KMean σ (C–C) = 0.004 Å R factor = 0.052 wR factor = 0.123 Data-to-parameter ratio = 12.5

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e. 1,6,11,18,24,27,52,55-Octakis(trifluoromethyl)-1,6,11,18,24,27,52,55-octahydro-(C₆₀-I_h)[5,6]fullerene

The title compound, $C_{68}F_{24}$, is one of five isomers of $C_{60}(CF_3)_8$. It has an idealized $I_h C_{60}$ core with the eight CF₃ groups arranged on an asymmetric *para–para–para–meta–para* (p^3mp) ribbon of six edge-sharing $C_6(CF_3)_2$ hexagons plus an isolated p- $C_6(CF_3)_2$ hexagon. There are no cage Csp^3-Csp^3 bonds. There are intramolecular $F \cdots F$ contacts between pairs of neighboring CF₃ groups that range from 2.582 (3) to 2.647 (3) Å.

Comment

The high-temperature reaction of C_{60} with CF_3I or $AgCF_3COO$ followed by sublimation at 673–773 K and HPLC purification has yielded one isomer each of $C_{60}(CF_3)_2$ and $C_{60}(CF_3)_4$ (Goryunkov *et al.*, 2003), two isomers of $C_{60}(CF_3)_6$ (Goryunkov *et al.*, 2003; Kareev, Shustova *et al.*, 2006), at least four isomers of $C_{60}(CF_3)_{10}$ (Kareev *et al.*, 2005; Kareev, Lebedkin, Miller *et al.*, 2006; Kareev, Lebedkin, Popov *et al.*, 2006), and one isomer of $C_{60}(CF_3)_{12}$ (Troyanov *et al.*, 2006). In a similar fashion, we have now isolated five isomers of $C_{60}(CF_3)_{8}$. The title compound, (I), is one of these five new compounds and we report its crystal structure here.

The structure of (I) (Fig. 1) comprises an idealized $I_h C_{60}$ cage with eight Csp^3 atoms at positions 1, 6, 11, 18, 24, 27, 53 and 56 (IUPAC nomenclature), each of which is attached to a CF₃ group. Each Csp^3 cage atom is adjacent to three Csp^2 cage atoms. The CF₃ groups are arranged on one isolated *para*- $C_6(CF_3)_2$ hexagon and a *para–para–para–meta–para* ribbon (a p^3mp ribbon) of edge-sharing C₆(CF₃)₂ hexagons (see Schlegel diagram in Fig. 1). The shared edges in the ribbon of

© 2006 International Union of Crystallography All rights reserved Received 22 June 2006 Accepted 26 June 2006

Figure 1

Left: The molecular structure of (I), showing the atom-labeling scheme and with displacement ellipsoids drawn at the 50% probability level. Right: Schlegel diagram of (I), showing the C_{60} core C-atom numbers (each core C atom bearing a CF₃ group is depicted as a black circle) and the p^3mp,p addition pattern [the *meta*- $C_6(CF_3)_2$ hexagon is indicated by the letter m].

Figure 2

Schlegel diagrams of (I), (II), (III) and (IV), showing the location of the R_f groups as black circles on the ribbons of *meta*- and *para*-C₆(R_f)₂ edgesharing hexagons [meta- $C_6(R_f)_2$ hexagons are indicated by the letter m]. All four compounds have a p^3mp ribbon as part of their structures [compound (IV) has two such ribbons in its structure].

hexagons are $Csp^3 - Csp^2$ bonds. Thus, any pair of adjacent hexagons along the ribbon have a common CF₃ group. There are $F \cdot \cdot F$ intramolecular contacts between pairs of neighboring CF₃ groups that range from 2.582 (3) to 2.647 (3) Å.

Fig. 2 shows the Schlegel diagrams for (I) and for the related addition patterns of C_1 - p^3mp,p - $C_{60}(C_2F_5)_8$, (II) (Kareev, Kuvychko *et al.*, 2006), C_1 - $p^3mpmpmp$ - $C_{60}(CF_3)_{10}$, (III) (Kareev, Lebedkin, Miller et al., 2006), and C₁-pmp³mpmp- $C_{60}(CF_3)_{10}$, (IV) (Kareev *et al.*, 2005). The structures of all four compounds include the p^3mp ribbon or ribbon fragment of six edge-sharing $C_6(R_f)_2$ hexagons that is also believed to be the addition pattern for C_1 - $C_{60}(CF_3)_6$ (Goryunkov *et al.*, 2003). The four shortest cage C-C bonds (Å) are C4-C5 [1.345 (3)], C7-C8 [1.351 (4)], C9-C10 [1.358 (4)] and C56-C60 [1.357 (4)]. Significantly, the C4–C5 and C9–C10 bonds are pentagon-hexagon junctions, which are the longer of the two types of C-C bonds in C_{60} .

Experimental

The synthesis of (I) was accomplished by heating C₆₀ in a stream of CF₃I at 733 K as previously reported (Kareev et al., 2005). Crystals of the HPLC-purified compound were grown by slow evaporation of a saturated toluene solution.

Crystal data

$C_{68}F_{24}$	Z = 4
$M_r = 1272.68$	$D_x = 2.029 \text{ Mg m}^{-3}$
Monoclinic, $P2_1/c$	Mo $K\alpha$ radiation
a = 17.4108 (13) Å	$\mu = 0.19 \text{ mm}^{-1}$
b = 9.7708 (8) Å	T = 100 (1) K
c = 24.5142 (18) Å	Plate, red
$\beta = 92.589 \ (4)^{\circ}$	$0.30 \times 0.12 \times 0.03 \text{ mm}$
V = 4166.0 (6) Å ³	

Data collection

Bruker Kappa-APEX-II	64785 measured reflections
diffractometer	10338 independent reflections
ω and ω scans	6471 reflections with $I > 2\sigma(I)$
Absorption correction: multi-scan	$R_{\rm int} = 0.070$
(SADABS; Bruker, 2000)	$\theta_{\rm max} = 28.3^{\circ}$
$T_{\min} = 0.945, \ T_{\max} = 0.995$	
Refinement	

Refinement on F^2	$w = 1/[\sigma^2(F_0^2) + (0.0437P)^2]$
$R[F^2 > 2\sigma(F^2)] = 0.052$	+ 4.7196P]
$wR(F^2) = 0.123$	where $P = (F_0^2 + 2F_c^2)/3$
S = 1.01	$(\Delta/\sigma)_{\rm max} = 0.001$
10338 reflections	$\Delta \rho_{\rm max} = 0.65 \ {\rm e} \ {\rm \AA}^{-3}$
830 parameters	$\Delta \rho_{\rm min} = -0.68 \text{ e } \text{\AA}^{-3}$
	Extinction correction: SHELXTL
	Extinction coefficient: 0.00067 (18)

Data collection: APEX2 (Bruker, 2006); cell refinement: APEX2; data reduction: APEX2; program(s) used to solve structure: SHELXTL (Bruker, 2000); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

The authors thank the Colorado State University Research Foundation, the Volkswagen Foundation (I-77/855) and the Russian Foundation for Basic Research (Project Nos. 05-03-33051a and 06-03-33147a) for supporting this study.

References

- Bruker (2000). *SHELXTL* (Version 6.14) and *SADABS* (Version 2.10). Bruker AXS Inc., Madison, Wisconsin, USA.
- Bruker (2006). APEX2. Version 2.0-2. Bruker AXS Inc., Madison, Wisconsin, USA.
- Goryunkov, A. A., Kuvychko, I. V., Ioffe, I. N., Dick, D. L., Sidorov, L. N., Strauss, S. H. & Boltalina, O. V. (2003). J. Fluorine Chem. **124**, 61–64.
- Kareev, I. E., Kuvychko, I. V., Lebedkin, S. F., Miller, S. M., Anderson, O. P., Seppelt, K., Strauss, S. H. & Boltalina, O. V. (2005). J. Am. Chem. Soc. 127, 8362–8375.

Kareev, I. E., Kuvychko, I. V., Lebedkin, S. F., Miller, S. M., Anderson, O. P., Strauss, S. H. & Boltalina, O. V. (2006). *Chem. Commun.* pp. 308–310.

- Kareev, I. E., Lebedkin, S. F., Miller, S. M., Anderson, O. P., Strauss, S. H. & Boltalina, O. V. (2006). Acta Cryst. E62, 01498–01500.
- Kareev, I. E., Lebedkin, S. F., Popov, A. A., Miller, S. M., Anderson, O. P., Strauss, S. H. & Boltalina, O. V. (2006). Acta Cryst. E62, o1501–01503.
- Kareev, I. E., Shustova, N. B., Kuvychko, I. V., Lebedkin, S. F., Miller, S. M., Anderson, O. P., Popov, A. A., Strauss, S. H. & Boltalina, O. V. (2006). Submitted for publication.
- Troyanov, S. I., Dimitrov, A. & Kemnitz, E. (2006). Angew. Chem. Int. Ed. 45, 1971–1974.